Package: eselect 1.1
eselect: Adaptive Clinical Trial Designs with Endpoint Selection and Sample Size Reassessment
Endpoint selection and sample size reassessment for multiple binary endpoints based on blinded and/or unblinded data. Trial design that allows an adaptive modification of the primary endpoint based on blinded information obtained at an interim analysis. The decision rule chooses the endpoint with the lower estimated required sample size. Additionally, the sample size is reassessed using the estimated event probabilities and correlation between endpoints. The implemented design is proposed in Bofill Roig, M., Gómez Melis, G., Posch, M., and Koenig, F. (2022). <doi:10.48550/arXiv.2206.09639>.
Authors:
eselect_1.1.tar.gz
eselect_1.1.zip(r-4.5)eselect_1.1.zip(r-4.4)eselect_1.1.zip(r-4.3)
eselect_1.1.tgz(r-4.4-any)eselect_1.1.tgz(r-4.3-any)
eselect_1.1.tar.gz(r-4.5-noble)eselect_1.1.tar.gz(r-4.4-noble)
eselect_1.1.tgz(r-4.4-emscripten)eselect_1.1.tgz(r-4.3-emscripten)
eselect.pdf |eselect.html✨
eselect/json (API)
# Install 'eselect' in R: |
install.packages('eselect', repos = c('https://martabofillroig.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:2ab7a8e054. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | OK | Nov 16 2024 |
R-4.5-linux | OK | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:corr_rest_bcorr_rest_ubeselecteselect_ubeselectsimeselectsim_ubestimation_bestimation_ubf_ORf_simfun_p0OR_functionsamplesize_ORtest_ftest_me
Dependencies:abindADGofTestbackportsbootbroomcarcarDataclicolorspaceCompAREdesigncopulacorrplotcowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragslgtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpcaPPpillarpkgconfigpolynompsplinepurrrquantregR6RColorBrewerRcppRcppEigenrlangrootSolverstatixscalesSparseMstablediststringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr